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Abstract
The discrete cosine transform (DCT) is a technique for converting a signal into elementary 
frequency components. It is widely used in image compression. Here we develop some simple 
functions to compute the DCT and to compress images. 
These functions illustrate the power of Mathematica in the prototyping of image processing 
algorithms.

 
The rapid growth of digital imaging applications, including desktop publishing, multimedia, 
teleconferencing, and high-definition television (HDTV) has increased the need for effective and 
standardized image compression techniques. Among the emerging standards are JPEG, for 
compression of still images [Wallace 1991]; MPEG, for compression of motion video [Puri 
1992]; and CCITT H.261 (also known as Px64), for compression of video telephony and 
teleconferencing.

All three of these standards employ a basic technique known as the discrete cosine transform 
(DCT). Developed by Ahmed, Natarajan, and Rao [1974], the DCT is a close relative of the 
discrete Fourier transform (DFT). Its application to image compression was pioneered by Chen 
and Pratt [1984]. In this article, I will develop some simple functions to compute the DCT and 
show how it is used for image compression. We have used these functions in our laboratory to 
explore methods of optimizing image compression for the human viewer, using information 
about the human visual system [Watson 1993]. The goal of this paper is to illustrate the use of 
Mathematica in image processing and to provide the reader with the basic tools for further 
exploration of this subject.

The One-Dimensional Discrete Cosine Transform
The discrete cosine transform of a list of n real numbers s(x), x = 0, ..., n-1, is the list of length n 
given by:
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S u( ) = 2 n C u( ) s x( ) cos 2x +1( )uπ
2nx= 0

n−1

ε u = 0,... ,n

where C u( ) = 2−1 2 for u = 0
= 1 otherwise

Each element of the transformed list S(u) is the inner (dot) product of the input list s(x) and a 
basis vector. The constant factors are chosen so that the basis vectors are orthogonal and 
normalized. The eight basis vectors for n = 8 are shown in Figure 1. The DCT can be written as 
the product of a vector (the input list) and the n x n orthogonal matrix whose rows are the basis 
vectors. This matrix, for n = 8, can be computed as follows:

DCTMatrix = 
  Table[ If[ k==0, 
    Sqrt[1/8],
    Sqrt[2/8] Cos[Pi (2j + 1) k/16] ],
  {k, 0, 7}, {j, 0, 7}] // N;

We can check that the matrix is orthogonal:

DCTMatrix . Transpose[DCTMatrix] // Chop // MatrixForm

1.   0    0    0    0    0    0    0

0    1.   0    0    0    0    0    0

0    0    1.   0    0    0    0    0

0    0    0    1.   0    0    0    0

0    0    0    0    1.   0    0    0

0    0    0    0    0    1.   0    0

0    0    0    0    0    0    1.   0

0    0    0    0    0    0    0    1.

Each basis vector corresponds to a sinusoid of a certain frequency:
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Show[GraphicsArray[Partition[
  ListPlot[#, PlotRange -> {-.5, .5}, PlotJoined -> True, 
      DisplayFunction -> Identity]& 
  /@ DCTMatrix, 2] ]];
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Figure 1. The eight basis vectors for the discrete cosine transform of length eight. 

The list s(x) can be recovered from its transform S(u) by applying the inverse cosine transform 
(IDCT):

s x( ) = 2 n C u( )
u=0

n−1

ε S u( ) cos 2x +1( )uπ
2n

x =0,.. .,n

where C u( ) = 2−1 2 for u = 0
= 1 otherwise

This equation expresses s as a linear combination of the basis vectors. The coefficients are the 
elements of the transform S, which may be regarded as reflecting the amount of each frequency 
present in the input s.

We generate a list of random numbers to serve as a test input:

input1 = Table[Random[Real, {-1, 1}], {8}]

{0.203056, 0.980407, 0.35312, -0.106651, 0.0399382, 0.871475, 
 
  -0.648355, 0.501067}

The DCT is computed by matrix multiplication:
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output1 = DCTMatrix . input1

{0.775716, 0.3727, 0.185299, 0.0121461, -0.325, -0.993021, 
0.559794, 
 
  -0.625127}

As noted above, the DCT is closely related to the discrete Fourier transform (DFT). In fact, it is 
possible to compute the DCT via the DFT (see [Jain 1989, p. 152]): First create a new list   by 
extracting the even elements, followed by the reversed odd elements. Then multiply the DFT of 
this re-ordered list by so-called "twiddle factors" and take the real part. We can carry out this 
process for n = 8 using Mathematica's DFT function. 

DCTTwiddleFactors = N @ Join[{1}, 
  Table[Sqrt[2] Exp[-I Pi k /16], {k, 7}]]

{1., 1.38704 - 0.275899 I, 1.30656 - 0.541196 I, 1.17588 - 
0.785695 I, 
 
  1. - 1. I, 0.785695 - 1.17588 I, 0.541196 - 1.30656 I, 
 
  0.275899 - 1.38704 I}

The function to compute the DCT of a list of length n = 8 is then:

DCT[list_] := Re[ DCTTwiddleFactors *
  InverseFourier[N[list[[{1, 3, 5, 7, 8, 6, 4, 2}]]]]]

Note that we use the function InverseFourier to implement what is usually in engineering 
called the forward DFT. Likewise, we use Fourier to implement what is usually called the 
inverse DFT. The function N is used to convert integers to reals because (in Version 2.2)  
Fourier and InverseFourier are not evaluated numerically when their arguments are all 
integers. The special case of a list of zeros needs to be handled separately by overloading the 
functions, since N of the integer 0 is an integer and not a real. [See In[] and Out[], page ?? --ed.] 

Unprotect[Fourier, InverseFourier];
Fourier[x:{0 ..}]:= x;
InverseFourier[x:{0 ..}]:= x;
Protect[Fourier, InverseFourier];

We apply DCT to our test input and compare it to the earlier result computed by matrix 
multiplication. To compare the results, we subtract them and apply the Chop function to suppress 
values very close to zero:

DCT[input1]

{0.775716, 0.3727, 0.185299, 0.0121461, -0.325, -0.993021, 
0.559794, 
 
  -0.625127}

% - output1 // Chop

{0, 0, 0, 0, 0, 0, 0, 0}
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The inverse DCT can be computed by multiplication with the inverse of the DCT matrix. We
illustrate this with our previous example:

Inverse[DCTMatrix] . output1

{0.203056, 0.980407, 0.35312, -0.106651, 0.0399382, 0.871475, 
 
  -0.648355, 0.501067}

% - input1 // Chop

{0, 0, 0, 0, 0, 0, 0, 0}

As you might expect, the IDCT can also be computed via the inverse DFT. The "twiddle factors" 
are the complex conjugates of the DCT factors and the reordering is applied at the end rather than 
the beginning:

IDCTTwiddleFactors = Conjugate[DCTTwiddleFactors]

{1., 1.38704 + 0.275899 I, 1.30656 + 0.541196 I, 1.17588 + 
0.785695 I, 
 
  1. + 1. I, 0.785695 + 1.17588 I, 0.541196 + 1.30656 I, 
 
  0.275899 + 1.38704 I}

IDCT[list_] := Re[Fourier[
  IDCTTwiddleFactors list] ][[{1, 8, 2, 7, 3, 6, 4, 5}]]

For example:

IDCT[DCT[input1]] - input1 // Chop

{0, 0, 0, 0, 0, 0, 0, 0}

The Two-Dimensional DCT
The one-dimensional DCT is useful in processing one-dimensional signals such as speech 
waveforms. For analysis of two-dimensional (2D) signals such as images, we need a 2D version 
of the DCT. For an n x m matrix s, the 2D DCT is computed in a simple way: The 1D DCT is 
applied to each row of s and then to each column of the result. Thus, the transform of s is given 
by

S u,v( ) =
2
nm

C u( )C v( ) s x, y( ) cos 2x +1( )uπ
2nx=0

n−1

ε cos 2y+1( )uπ
2my=0

m−1

ε u = 0,... ,n v = 0,...,m

where C u( ) = 2−1 2 for u = 0
= 1 otherwise

Since the 2D DCT can be computed by applying 1D transforms separately to the rows and 
columns, we say that the 2D DCT is separable in the two dimensions.
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As in the one-dimensional case, each element S(u, v) of the transform is the inner product of the 
input and a basis function, but in this case, the basis functions are n x m matrices. Each 
two-dimensional basis matrix is the outer product of two of the one-dimensional basis vectors. 
For n = m = 8, the following expression creates an 8 x 8 array of the 8 x 8  basis matrices, a 
tensor with dimensions {8, 8, 8, 8}:

DCTTensor = Array[
  Outer[Times, DCTMatrix[[#1]], DCTMatrix[[#2]]]&, 
    {8, 8}];

Each basis matrix can be thought of as an image. The 64 basis images in the array are shown in 
Figure 2.   

The package GraphicsImage.m, included in the electronic supplement, contains the functions 
GraphicsImage and ShowImage to create and display a graphics object from a given matrix. 
GraphicsImage uses the built-in function Raster to translate a matrix into an array of gray 
cells. The matrix elements are scaled so that the image spans the full range of graylevels. An 
optional second argument specifies a range of values to occupy the full grayscale; values outside 
the range are clipped. The function ShowImage displays the graphics object using Show.

<< GraphicsImage.m

Show[GraphicsArray[
  Map[GraphicsImage[#, {-.25, .25}]&, 
    Reverse[DCTTensor], 
    {2}] ]];

Figure 2. The 8 x 8 array of basis images for the two-dimensional discrete cosine transform.

Each basis matrix is characterized by a horizontal and a vertical spatial frequency. The matrices 
shown here are arranged left to right and bottom to top in order of increasing frequencies.

To illustrate the 2D transform, we apply it to an 8 x 8 image of the letter A:

Mathematica Journal, 4(1), 1994, p. 81-88



ShowImage[ input2 =
{{0, 1, 0, 0, 0, 1, 0, 0}, {0, 1, 0, 0, 0, 1, 0, 0},
 {0, 1, 1, 1, 1, 1, 0, 0}, {0, 1, 0, 0, 0, 1, 0, 0},
 {0, 0, 1, 0, 1, 0, 0, 0}, {0, 0, 1, 0, 1, 0, 0, 0},
 {0, 0, 1, 0, 1, 0, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0}}]

-Graphics-

As in the 1D case, it is possible to express the 2D DCT as an array of inner products (a tensor 
contraction):

output2 = Array[
  (Plus @@ Flatten[DCTTensor[[#1, #2]] input2])&,
  {8, 8}];

ShowImage[output2]

-Graphics-

The pixels in this DCT image describe the proportion of each two-dimensional basis function 
present in the input image. The pixels are arranged as above, with horizontal and vertical 
frequency increasing from left to right and bottom to top, respectively. The brightest pixel in the 
lower left corner is known as the DC term, with frequency {0, 0}. It is the average of the pixels 
in the input, and is typically the largest coefficient in the DCT of "natural" images.

An inverse 2D IDCT can also be computed in terms of DCTTensor; we leave this as an exercise 
for the reader. 

Since the two-dimensional DCT is separable, we can extend our function DCT to the case of  
two-dimensional input as follows: 
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DCT[array_?MatrixQ] :=
  Transpose[DCT /@ Transpose[DCT /@ array] ]

This function assumes that its input is an 8 x 8 matrix. It takes the 1D DCT of each row, 
transposes the result, takes the DCT of each new row, and transposes again. This function is 
more efficient than computing the tensor contraction shown above, since it exploits the built-in 
function InverseFourier.

We compare the result of this function to that obtained using contraction of tensors :

DCT[input2] - output2 // Chop // Abs // Max

0

The definition of the inverse 2D DCT is straightforward:

IDCT[array_?MatrixQ] :=
  Transpose[IDCT /@ Transpose[IDCT /@ array] ]

As an example, we invert the transform of the letter A:

ShowImage[Chop[IDCT[output2]]];

As noted earlier, the components of the DCT output indicate the magnitude of image components 
at various 2D spatial frequencies. To illustrate, we can set the last row and  column of the DCT of 
the letter A equal to zero:

output2[[8]] = Table[0, {8}];
Do[output2[[i, 8]] = 0, {i, 8}];

Now take the inverse transform:
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ShowImage[Chop[IDCT[output2]]];

The result is a blurred letter A: the highest horizontal and vertical frequencies have been removed. 
This is easiest to see when the image is reduced in size so that individual pixels are not as visible.

2D Blocked DCT
To this point, we have defined functions to compute the DCT of a list of length n = 8 and the   2D 
DCT of an 8 x 8 array. We have restricted our attention to this case partly for simplicity of 
exposition, and partly because when it is used for image compression, the DCT is typically 
restricted to this size. Rather than taking the transformation of the image as a whole, the DCT is 
applied separately to 8 x 8 blocks of the image. We call this a blocked DCT.

To compute a blocked DCT, we do not actually have to divide the image into blocks. Since the 
2D DCT is separable, we can partition each row into lists of length 8, apply the DCT to them, 
rejoin the resulting lists, and then transpose the whole image and repeat the process:

DCT[list_?(Length[#]>8&)] :=
  Join @@ (DCT /@ Partition[list, 8])

It may be worth tracing the progress of this deceptively simple piece of code as it works upon a 
16 x 16 image. First, we observe the order in which Mathematica stores the three rules we have 
given for DCT:

?DCT

Global`DCT

DCT[(array_)?MatrixQ] := Transpose[DCT /@ Transpose[DCT /@ 
array]]
 
DCT[(list_)?(Length[#1] > 8 & )] := 
  Apply[Join, DCT /@ Partition[list, 8]]
 
DCT[list_] := Re[DCTTwiddleFactors*
    InverseFourier[N[list[[{1, 3, 5, 7, 8, 6, 4, 2}]]]]]

When evaluating DCT of a 16 x 16 image, Mathematica begins by checking the first rule. It 
recognizes that the input is a matrix, and thus invokes the rule and applies DCT to each row. 
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When DCT is applied to a row of length 16, the second rule comes into play. The row is 
partitioned into two lists of length 8, and DCT is applied to each. These applications invoke the 
last rule, which simply computes the 1D DCT of the lists of length 8. The two sub-rows are then 
rejoined by the second rule. After each row has been transformed in this way, the entire matrix is 
transposed by the first rule. The process of partitioning, transforming, and rejoining each row is 
then repeated, and the resulting matrix is transposed again.

For a test image, we provide a small 64 x 64 picture of a space shuttle launch. We use the utility 
function ReadImageRaw, defined in the package GraphicsImage.m to read a matrix of 
graylevels from a file:

shuttle = ReadImageRaw["shuttle", {64, 64}];

ShowImage[shuttle]

-Graphics-

Applying the DCT to this image gives an image consisting of 8 x 8  blocks, each block a DCT of 
8 x 8 pixels:

ShowImage[DCT[shuttle], {-300, 300}]

-Graphics-

The lattice of bright dots is formed by the DC coefficients from each of the DCT blocks. To 
reduce the dominance of these terms, we display the image with a clipped graylevel range. Note 
also the greater activity in the lower left compared to the upper right, which corresponds mainly 
to uniform sky.
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The inverse DCT of a list of length greater than 8 is defined in the same way as the forward 
transform:

IDCT[list_?(Length[#]>8&)] :=
  Join @@ (IDCT /@ Partition[list, 8])

Here is a simple test:

shuttle - IDCT[DCT[shuttle]] // Chop // Abs // Max

0

Quantization
DCT-based image compression relies on two techniques to reduce the data required to represent 
the image. The first is quantization of the image's DCT coefficients; the second is entropy coding 
of the quantized coefficients. Quantization is the process of reducing the number of possible 
values of a quantity, thereby reducing the number of bits needed to represent it. Entropy coding is 
a technique for representing the quantized data as compactly as possible. We will develop 
functions to quantize images and to calculate the level of compression provided by different 
degrees of quantization. We will not implement the entropy coding required to create a 
compressed image file.

A simple example of quantization is the rounding of reals into integers. To represent a real 
number between 0 and 7 to some specified precision takes many bits. Rounding the number to 
the nearest integer gives a quantity that can be represented by just three bits.

x = Random[Real, {0, 7}]

2.78452

Round[x]

3

In this process, we reduce the number of possible values of the quantity (and thus the number of 
bits needed to represent it) at the cost of losing information. A "finer" quantization, that allows 
more values and loses less information, can be obtained by dividing the number by a weight 
factor before rounding:

w = 1/4;

Round[x/w]

11

Taking a larger value for the weight gives a "coarser" quantization.

Dequantization, which maps the quantized value back into its original range (but not its original 
precision) is acheived by multiplying the value by the weight:
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w * % // N

2.75

The quantization error is the change in a quantity after quantization and dequantization. The largest 
possible quantization error is half the value of the quantization weight.

In the JPEG image compression standard, each DCT coefficient is quantized using a weight that 
depends on the frequencies for that coefficient. The coefficients in each 8 x 8 block are divided by 
a corresponding entry of an 8 x 8 quantization matrix, and the result is rounded  to the nearest 
integer.

In general, higher spatial frequencies are less visible to the human eye than low frequencies. 
Therefore, the quantization factors are usually chosen to be larger for the higher frequencies. The 
following quantization matrix is widely used for monochrome images and for the luminance 
component of a color image. It is given in the JPEG standards documents, yet is not part of the 
standard, so we call it the "de facto" matrix:

qLum = 
  {{16, 11, 10, 16, 24, 40, 51, 61},
   {12, 12, 14, 19, 26, 58, 60, 55},
   {14, 13, 16, 24, 40, 57, 69, 56},
   {14, 17, 22, 29, 51, 87, 80, 62},
   {18, 22, 37, 56, 68,109,103, 77},
   {24, 35, 55, 64, 81,104,113, 92},
   {49, 64, 78, 87,103,121,120,101},
   {72, 92, 95, 98,112,100,103, 99}};

Displaying the matrix as a grayscale image shows the dependence of the quantization factors on 
the frequencies:

ShowImage[qLum];

To implement the quantization process, we must partition the transformed image into 8 x 8 
blocks:

BlockImage[image_, blocksize_:{8, 8}] :=
  Partition[image, blocksize] /; 
  And @@ IntegerQ /@ (Dimensions[image]/blocksize)

The function UnBlockImage reassembles the blocks into a single image:
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UnBlockImage[blocks_] :=
  Partition[
    Flatten[Transpose[blocks, {1, 3, 2}]], 
    {Times @@ Dimensions[blocks][[{2, 4}]]}]

For example:

Table[i + 8(j-1), {j, 4}, {i, 6}] // MatrixForm

1    2    3    4    5    6

9    10   11   12   13   14

17   18   19   20   21   22

25   26   27   28   29   30

BlockImage[%, {2, 3}] // MatrixForm

1  2  3    4  5  6
9  10 11   12 13 14

17 18 19   20 21 22
25 26 27   28 29 30

UnBlockImage[%] // MatrixForm

1    2    3    4    5    6

9    10   11   12   13   14

17   18   19   20   21   22

25   26   27   28   29   30

Our quantization function blocks the image, divides each block (element-by-element) by the 
quantization matrix, reassembles the blocks, and then rounds the entries to the nearest integer:

DCTQ[image_, qMatrix_] :=
  Map[(#/qMatrix)&, 
    BlockImage[image, Dimensions[qMatrix]],  
    {2}] // UnBlockImage // Round

The dequantization function blocks the matrix, multiplies each block by the quantization factors, 
and reassembles the matrix:

IDCTQ[image_, qMatrix_] :=
  Map[(# qMatrix)&, 
    BlockImage[image, Dimensions[qMatrix]],  
    {2}] // UnBlockImage

To show the effect of quantization, we will transform, quantize, and reconstruct our image of the 
shuttle using the quantization matrix  introduced above:

qshuttle = shuttle // 
  DCT // DCTQ[#, qLum]& // IDCTQ[#, qLum]& // IDCT;
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For comparison, we show the original image together with the quantized version:

Show[GraphicsArray[
  GraphicsImage[#, {0, 255}]& /@ {shuttle, qshuttle}]];

Note that some artifacts are visible, particularly around high-contrast edges. In the next section, 
we will compare the visual effects and the amount of compression obtained from different 
degrees of quantization.

Entropy
To measure how much compression is obtained from a quantization matrix, we use a famous 
theorem of Claude Shannon [Shannon and Weaver 1949]. The theorem states that for a sequence 
of symbols with no correlations beyond first order, no code can be devised to represent the 
sequence that uses fewer bits per symbol than the first-order entropy, which is given by     

h = − pi log2 pi( )
i
ε

where pi  is the relative frequency of the ith symbol.

To compute the first-order entropy of a list of numbers, we use the function Frequencies, 
from the standard package Statistics`DataManipulation`. This function computes the 
relative frequencies of elements in a list:

( shac poisson)  In[ 1 ] :=  ( 7 / 12 / 94  at  8 :58 :26  AM)
Frequencies[list_List] :=
  Map[{Count[list, #], #}&, Union[list]]

Characters["mississippi"]

{m, i, s, s, i, s, s, i, p, p, i}

Frequencies[%]

{{4, i}, {1, m}, {2, p}, {4, s}}

Calculating the first-order entropy is straightforward:
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Entropy[list_] := 
  - Plus @@ N[# Log[2, #]]& @ 
    (First[Transpose[Frequencies[list]]]/Length[list])

For example, the entropy of a list of four distinct symbols is 2, so 2 bits are required to code each 
symbol:

Entropy[{"a", "b", "c", "d"}]

2.

Similarly, 1.82307 bits are required for this longer list with four symbols:

Entropy[Characters["mississippi"]]

1.82307

A list with more symbols and fewer repetitions requires more bits per symbol:

Entropy[Characters["california"]]

2.92193

The appearance of fractional bits may be puzzling to some readers, since we think of a bit as a 
minimal, indivisible unit of information. Fractional bits are a natural outcome of the use of what 
are called "variable word-length" codes. Consider an image containing 63 pixels with a greylevel 
of 255, and one pixel with a graylevel of 0. If we employed a code which used a symbol of 
length 1 bit to represent 255, and a symbol of length 2 bits to represent 0, then we would need 65 
bits to represent the image, or in terms of the average bit-rate, 65/64 = 1.0156 bits/pixel. The 
entropy as calculated above is a lower bound on this average bit-rate. 

The compression ratio is another frequently used measure of how effectively an image has been 
compressed. It is simply the ratio of the size of the image file before and after compression. It is 
equal to the ratio of bit-rates, in bits/pixel, before and after compression. Since the initial bit-rate is 
usually 8 bits/pixel, and the entropy is our estimate of the compressed bit-rate, the compression 
ratio is estimated by 8/entropy.

We will use the following function to examine the effects of quantization:

f[image_, qMatrix_] :=
  {Entropy[Flatten[#]], IDCT[IDCTQ[#, qMatrix]]}& @
    DCTQ[DCT[image], qMatrix]

This function transforms and quantizes an image, computes the entropy, and dequantizes and 
reconstructs the image. It returns the entropy and the resulting image. A simple way to 
experiment with different degrees of quantization is to divide the "de facto" matrix qLum by a 
scalar and look at the results for various values of this parameter:

  test = f[shuttle, qLum/#]& /@ {1/4, 1/2, 1, 4}; 

Here are the reconstructed images and the corresponding entropies: 
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Show[GraphicsArray[
  Partition[
    Apply[
      ShowImage[#2, {0, 255}, PlotLabel -> #1, 
        DisplayFunction -> Identity]&, 
      test, 1],
    2] ] ]

1.7534 3.10061

0.838331 1.25015

-GraphicsArray-

Timing
Most of the computation time required to transform, quantize, dequantize, and reconstruct an 
image is spent on forward and inverse DCT calculations. Because these transforms are applied to 
blocks, the time required is proportional to the size of the image. On a SUN Sparcstation 2, the 
timings increase (at a rate of 0.005 second/pixel) from about 20 seconds for a 642 pixel image to 

about 320 seconds for 2562 pixels.  

These times are much longer than for comparable functions written in a low-level langauge such 
as C. For example, a C program performed the same computations in under 2 seconds for an 
image of 2562 pixels, more than 100 times faster than our Mathematica functions. However, for 
the purposes for which our code was developed, namely education, algorithm development, and 
prototyping other applications, the timings are acceptable.
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